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Quantifying environmental systems

* Project delivery teams usually have a deep understanding
of their systems, but not all members of the team may be
familiar/comfortable with advanced math

» Elegant mathematical solutions are not the only approach

* If you understand something about your system, you can
model it

* Everyone brings some knowledge to the table




Quantification

- Quantifying models provides the ability to
understand numerical consequences of ideas,
scenarios, system dynamics, etc..

* Conceptual models should be used a template

« Equations should be tightly coupled with conceptual
models

» Helps with communication and transparency

« Document where equations come from and how they
were chosen

 Don’t hide behind the math/code




Conceptual models as templates
for auantification
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Choosing appropriate mathematics
and software

In theory:
» Results should not depend on software or advanced math
« What is important is that critical processes are captured

In practice:
« Software/mathematics affect efficiency and computation time
* Need to identify up-front how model will be quantified
* Mechanistic (process-based) models aren’t developed that
often for USACE planning
« Statistical equations (correlations) can be used as proxies



How do you choose an approach?

Key considerations:
« Experience
« Comfort-level
* Deadlines
* Question being asked

 Desired level of complexity
for project stage and goals

Simpler is better — Don’t make it too complicated!



Selecting an appropriate temporal scale

* How often will the model be updated, and
how long will it run? Millennia

e USACE plans for a 50 yr horizon, but how often do
you need to calculate changes in order to get an
accurate idea?

* What processes are you interested in? How
often do they occur? When are species
present?

* Temporal scale needs to reflect what’s happening | Days
in nature, not what’s convenient ‘w

e Familiar units aren’t necessary
e Can use 12 sec, 3 days, 14 months, 50 yrs, etc...

Months

Hours

Minutes

Seconds




More on temporal scale

 Can have nested time scales within a model
* What level of precision is necessary?
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Functional forms of equations

How should relationships be quantified?
!
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What if functional forms are unknown?

Use verbal descriptions and graphical functions
* Try to explain the relationship in a minute, then draw a picture

» Graphical representations provide an intermediate step between verbal and
mathematical representations

1, - Linear functions: 1
simplest relationship; the
general relationship
between two variables is
understood (e.qg., variable o4
A increases when variable

B decreases), but the

exact form is not 0

Logistic functions:
more complex;
allows threshold
effects and periods
of stasis and rapid
change
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Types of data and parameterizations

Quantitative data
* Field work
 Remotely sensed data
* Other models
» Literature
* Theory

Semi-quantitative data
« Ranked data
* Indices

Qualitative data
« Expert opinion -—-
¢ Hypotheses Swannack and Westervelt 2011

The model itself
» Experimenting with a model can reveal trends and patterns

Manitoba Land Initiative




Integrated models

Integrated models are models composed of multiple models
« USACE modeling generally combines hydrodynamic & ecological

models

MATLAB

Python

Translate to
Python

Huff et al. 2024, EMRRP Webinar
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Capturing feedbacks and thresholds

 All environmental systems have feedback
(positive/negative) and thresholds
 e.g., crowding in populations is a negative feedback
« Species viability changes under different environmental conditions

These effects are often difficult to determine precisely in nature




Quantifying thresholds

Quickest way is with step-functions or if-then statements
« Equations are almost never reported, but are needed for transparency

Swannack et al. 2014

3 o3 OSIysss = =03 + (0.06 + MSSS)
] OSIysss = -0.4 + (0.07 x MSSS)
S 0SIysss = - 1.1+ (0.1167 = MSSS)
OSlysss = 1
2 0SIysss = 2.925 - (0.0875 = MSSS)
£ o OSIysss = 1.5 - (0.04 » MSSS)
0SIysss = 0.8 - (0.02 = MSSS)
o 0 1I0 2I0 3I0 4I0
Mean salinity during spawning season (MSSS)
Typical HSI step function Take advantage of the math!

used in planning models (equations look smarter)




Quantifying thresholds

Quickest way is with step-functions or if-then statements
« Equations are almost never reported, but are needed for transparency

)




Example: seagrass quantification
(Yaquina Bay, OR)

Conceptual Functional, Mathematical, captures
(simple, 3 variables) captures thresholds breadth of parameter space
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Breaking down models

Three parameter model=14 different equations
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Missing data

* There are often relationships that aren’t defined
quantitatively
* Must rely on expert opinion ‘
* Literature
* Interpolations

* This is not less rigorous than quantitative data analysis,
just less precise
« Qualitative data requires increased attention during documentation

* Will make bigger mistake leaving out important
relationships than hypothesizing about relationships

 Increased need for transparency




Quantifying expert opinion

Whalllﬁcl‘%eég;j;fect more data and the lines aren’t straight
model to reflect anymore?
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Modeling without data

 Decisions will need to be made, regardless of data availability

* Transparency is important

« Simple functions can help identify magnitude and general
trends in the absence of data

« Expert opinion can be used to parameterize equations until
other datasets are available

Population growth ' Carrying capacity (k)




Spatial modeling

* Incorporating topographic, geomorphic, and/or land use
patterns into models to understand how changes in
spatial configurations affect ecological dynamics

« Space matters: configuration and composition of
landscapes can affect ecological structure and function
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Considering space
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Working with spatial models

 Considerations:

 Location-based differences across the project
area

 What spatial scale is relevant?

* Link ecological processes to a spatial scale (i.e.,
grid/DEM/etc.)




Pitfalls of model quantification

« Choosing inappropriate mathematics & software
* Not all formats lend themselves to a given problem
« Can get trapped by constraints of approach

 Failing to select an appropriate temporal scale

» Too long: violates assumption that change in system is constant b/w
time steps

» Too short: lose interpretability, longer simulation time




Pitfalls of model quantification

* Relying on automated parameterization techniques

* Processes that test every possible combination of parameter
values can quickly turn the model into a black box

* Using overly sophisticated equations

* |[t's easy to rely on fancy stats, but make sure they are
appropriate for the objective of the model




Pitfalls of model quantification

* Uninterpretable functional relationships/coefficients
without meaning
» Functional relationships should make sense (within your
discipline)
» Coefficients should reflect the magnitude of the process
occurring in nature

 Failing to consider units of measure
« Can violate assumptions and create nonsensical results




Pitfalls of model quantification

* Lack of clear verbal description
* |[f you can’t explain it clearly, you can’'t math it correctly

* Try to explain it in one minute — where you get hung up can
help identify problem areas

 Failing to consider graphical relationships
 Intermediate step b/w verbal and mathematical model
« Can serve as proxy for formalized equations

* Reluctance to use qualitative information
» Specific numbers can be difficult to find. Stories aren’t

 Removing functional relationships due to lack of
data




Interactive toolkit for applied modeling (TAM)

 Platform developed for rapid model development
« Quantifies threshold-based datasets
» Certified for USACE

ENTER DATA INTO HIGHLIGHTED CELLS

Breakpoint # Environmental Variable Index Value (Y) Values Intercept Slope Equation References
1 1] 1.000 0-118 1.00 -0.0008 Y=1+ [-0.0008 * Envircnmental Variable)
2 118 0.900 118 -136 156 -0.0056  ¥=156+ (-0.0056 * Environmental Variable)
3 136 0.800 136-3684 111 -0.0023 ¥=111+ (-0.0023 * Environmental Variable)
4 3684 0275 36B.4-400 336 -0.0084  ¥=336+ (-0.0084 * Environmental Variable)
5 400 0.01 400 -450 0.09 -0.0002 Y=0009+ (-0.0002 * Environmental Variable)
& 450 1] 450 -500  -2.25 0.0050 ¥=-2.25+ (0.005 * Envircnmental Variable)
7 500 0.25 500 -750 0.15 0.0002 ¥=0.15+ (0.0002 * Environmental Variable)
g 750 0.3 750-800 -4.20 0.0060 ¥Y=-4.2+ (0,006 * Environmental Variable)
9 200 06 BOO-900  -0.60 0.0015 ¥Y=-0.6+ [(0.0015 * Envircnmental Variable)
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Carrillo et al. 2022




TAM example

Quantifying a conceptual relationship using TAM
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